153 research outputs found

    Resolving gravitational microlensing events with long-baseline optical interferometry. Prospects for the ESO Very Large Telescope Interferometer

    Get PDF
    Until now, the detailed interpretation of the observed microlensing events has suffered from the fact that the physical parameters of the phenomenon cannot be uniquely determined from the available astronomical measurements, i.e. the photometric lightcurves. The situation will change in the near-future with the availability of long-baseline, sensitive optical interferometers, which should be able to resolve the images of the lensed objects into their components. For this, it will be necessary to achieve a milliarcsecond resolution on sources with typical magnitudes K \ga 12. Indeed, brighter events have never been observed up to now by micro-lensing surveys. We discuss the possibilities opened by the use of long baseline interferometry in general, and in particular for one such facility, the ESO VLT Interferometer, which will attain the required performance. We discuss the expected accuracy and limiting magnitude of such measurements. On the basis of the database of the events detected by the OGLE experiment, we estimate the number of microlenses that could be available for measurements by the VLTI. We find that at least several tens of events could be observed each year. In conjunction with the photometric data, our ability to measure the angular separation between the microlensed images will enable a direct and unambiguous determination of both their masses and locations.Comment: Accepted for publication in Astronomy & Astrophysic

    ONE STEP ELECTRODEPOSITION OF CuInSe2 THIN FILMS

    Get PDF
    Formation of CuInSe2 (CIS) thin films from aqueous solution containing citrate as complexing agent is reported. The surface morphology and the composition of the deposited films are characterized by scanning electron microscopy (SEM). The texture of the deposits and their compositions are analyzed by X-ray diffraction and transmission electron microscopy (TEM). Annealing of the films at 350°C in flowing argon electrodeposited at potentials in the range [-0.24, -0.4 (V vs Ag/AgCl)] resulted in the formation of alpha-Cu 2 Se (JCPDS 24-1131) and CuSe (JCPDS 6-0427). On the contrary, annealing in the same conditions of the films electrodeposited between -0.4 and -0.6 V vs Ag/AgCl led to the formation of chalcopyrite CuInSe 2 (JCPDS 23-209) with alpha-Cu 2 Se (JCPDS 24-1131) as secondary phase. The formation of CuInSe 2 films with a chalcopyrite structure and good stoichiometry is observed.Formation of CuInSe2 (CIS) thin films from aqueous solution containing citrate as complexing agent is reported. The surface morphology and the composition of the deposited films are characterized by scanning electron microscopy (SEM). The texture of the deposits and their compositions are analyzed by X-ray diffraction and transmission electron microscopy (TEM). Annealing of the films at 350°C in flowing argon electrodeposited at potentials in the range [-0.24, -0.4 (V vs Ag/AgCl)] resulted in the formation of alpha-Cu 2 Se (JCPDS 24-1131) and CuSe (JCPDS 6-0427). On the contrary, annealing in the same conditions of the films electrodeposited between -0.4 and -0.6 V vs Ag/AgCl led to the formation of chalcopyrite CuInSe 2 (JCPDS 23-209) with alpha-Cu 2 Se (JCPDS 24-1131) as secondary phase. The formation of CuInSe 2 films with a chalcopyrite structure and good stoichiometry is observed

    Mid-infrared interferometry with K band fringe-tracking I. The VLTI MIDI+FSU experiment

    Full text link
    Context: A turbulent atmosphere causes atmospheric piston variations leading to rapid changes in the optical path difference of an interferometer, which causes correlated flux losses. This leads to decreased sensitivity and accuracy in the correlated flux measurement. Aims: To stabilize the N band interferometric signal in MIDI (MID-infrared Interferometric instrument), we use an external fringe tracker working in K band, the so-called FSU-A (fringe sensor unit) of the PRIMA (Phase-Referenced Imaging and Micro-arcsecond Astrometry) facility at VLTI. We present measurements obtained using the newly commissioned and publicly offered MIDI+FSU-A mode. A first characterization of the fringe-tracking performance and resulting gains in the N band are presented. In addition, we demonstrate the possibility of using the FSU-A to measure visibilities in the K band. Methods: We analyzed FSU-A fringe track data of 43 individual observations covering different baselines and object K band magnitudes with respect to the fringe-tracking performance. The N band group delay and phase delay values could be predicted by computing the relative change in the differential water vapor column density from FSU-A data. Visibility measurements in the K band were carried out using a scanning mode of the FSU-A. Results: Using the FSU-A K band group delay and phase delay measurements, we were able to predict the corresponding N band values with high accuracy with residuals of less than 1 micrometer. This allows the coherent integration of the MIDI fringes of faint or resolved N band targets, respectively. With that method we could decrease the detection limit of correlated fluxes of MIDI down to 0.5 Jy (vs. 5 Jy without FSU-A) and 0.05 Jy (vs. 0.2 Jy without FSU-A) using the ATs and UTs, respectively. The K band visibilities could be measured with a precision down to ~2%.Comment: 11 pages, 13 figures, Accepted for publication in A&

    Image reconstruction in optical interferometry: Benchmarking the regularization

    Full text link
    With the advent of infrared long-baseline interferometers with more than two telescopes, both the size and the completeness of interferometric data sets have significantly increased, allowing images based on models with no a priori assumptions to be reconstructed. Our main objective is to analyze the multiple parameters of the image reconstruction process with particular attention to the regularization term and the study of their behavior in different situations. The secondary goal is to derive practical rules for the users. Using the Multi-aperture image Reconstruction Algorithm (MiRA), we performed multiple systematic tests, analyzing 11 regularization terms commonly used. The tests are made on different astrophysical objects, different (u,v) plane coverages and several signal-to-noise ratios to determine the minimal configuration needed to reconstruct an image. We establish a methodology and we introduce the mean-square errors (MSE) to discuss the results. From the ~24000 simulations performed for the benchmarking of image reconstruction with MiRA, we are able to classify the different regularizations in the context of the observations. We find typical values of the regularization weight. A minimal (u,v) coverage is required to reconstruct an acceptable image, whereas no limits are found for the studied values of the signal-to-noise ratio. We also show that super-resolution can be achieved with increasing performance with the (u,v) coverage filling. Using image reconstruction with a sufficient (u,v) coverage is shown to be reliable. The choice of the main parameters of the reconstruction is tightly constrained. We recommend that efforts to develop interferometric infrastructures should first concentrate on the number of telescopes to combine, and secondly on improving the accuracy and sensitivity of the arrays.Comment: 15 pages, 16 figures; accepted in A&

    ESPRI data-reduction strategy and error budget for PRIMA

    Get PDF
    The Exoplanet Search with PRIma (ESPRI) will use the PRIMA dual-feed astrometric capability on the Very Large Telescope Interferometer (VLTI) to perform astrometric detections of extra-solar planets. We present an overview of our data-reduction strategy for achieving 10-μarcsecond accuracy narrow-angle astrometry using the PRIMA instrument. We discuss the error budget for astrometric measurements, and those aspects of our strategy which are designed to minimise the astrometric measurement error

    The ESPRI project: narrow-angle astrometry with VLTI-PRIMA

    Get PDF
    We describe the ongoing hardware and software developments that shall enable the ESO VLTI to perform narrow-angle differential delay astrometry in K-band with an accuracy of up to 10 μarcsec. The ultimate goal of these efforts is to perform an astrometric search for extrasolar planets around nearby star
    corecore